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Mesophotic coral ecosystems (MCEs) are light-dependent coral-associated
communities found at 30–150 m depth. Corals inhabiting these deeper reefs are often
acclimatized to a limited and blue-shifted light environment, enabling them to maintain
the relationship with their photosynthetic algal symbionts (family Symbiodiniaceae)
despite the seemingly suboptimal light conditions. Among others, fluorescent proteins
produced by the coral host may play a role in the modulation of the quality and spectral
distribution of irradiance within the coral tissue through wavelength transformation.
Here we examined the bio-optical properties and photosynthetic performances
of different fluorescence morphs of two mesophotic coral species Goniopora
minor and Alveopora ocellata, in order to test the photosynthesis enhancement
hypothesis proposed for coral fluorescence. The green morph of G. minor and the low
fluorescence morph of A. ocellata exhibit, in their natural habitats, higher abundance.
The morphs also presented different spectral reflectance and light attenuation
within the tissue. Nevertheless, chlorophyll a fluorescence-based, and O2 evolution
measurements, revealed only minor differences between the photosynthetic abilities
of three fluorescence morphs of the coral G. minor and two fluorescence morphs of
A. ocellata. The fluorescence morphs did not differ in their algal densities or chlorophyll
concentrations and all corals harbored Symbiodiniaceae from the genus Cladocopium.
Thus, despite the change in the internal light quantity and quality that corals and their
symbionts experience, we found no evidence for the facilitation or enhancement of
photosynthesis by wavelength transformation.

Keywords: photosynthesis, mesophotic coral ecosystems (MCEs), Symbiodiniaceae, fluorescence, microsensors

INTRODUCTION

Stony corals are sessile organisms and are considered to be highly dependent on the photosynthates
derived from their algal symbionts (family Symbiodiniaceae; LaJeunesse et al., 2018) as their
main energy source (Muscatine, 1990). Sustaining high rates of photosynthesis in the underwater
light environment is challenging as (1) light attenuates rapidly with depth (Kirk, 2011a),
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(2) wave movement creates a flickering effect that causes
rapid and extreme localized changes in light intensity (Walsh
and Legendre, 1983), (3) the macro-structure of the reef
may shade coral colonies (Stimson, 1985; Kaniewska et al.,
2008), and (4) certain substrates may be highly reflective
consequently contributing to downwelling irradiance (Kirk,
2011b). Scleractinian corals in mesophotic coral ecosystems
(MCEs; 30–150 m) experience light intensities that are up to
99% lower than those experienced by their shallow counterparts
(0–30 m; Kahng and Kelley, 2007; Lesser et al., 2009; Tamir
et al., 2019). Additionally, MCEs are also exposed to a restricted
light spectrum centered around the blue region of the spectrum
(Jerlov, 1968; Kahng et al., 2019). Coral photoacclimatization
to MCEs is manifested at the coral-host level as changes in
colony morphology (Kaniewska et al., 2008; Nir et al., 2011),
skeletal features that modify the internal light environment
(Enríquez et al., 2005; Kahng et al., 2012), changes in the
populations of endosymbiotic Symbiodiniaceae expressed as a
shift in their genetic identity (Cooper et al., 2011; Bongaerts
et al., 2013; Einbinder et al., 2016) and modifications in the
composition of photosynthetic pigments and structure of the
photosynthetic complex (Einbinder et al., 2016). These changes,
among others, potentially assist corals in maintaining a successful
symbiosis with Symbiodiniaceae. Accordingly, deeper corals will
usually present a higher maximal quantum yield of photosystem
II (Einbinder et al., 2016; Ben-Zvi et al., 2020), a lower
Symbiodiniaceae density accompanied by higher chlorophyll
concentration within algal cells (Mass et al., 2007), and a reduced
capacity to manage excess light (Einbinder et al., 2016; Ben-Zvi
et al., 2020). Additionally, mesophotic corals may rely more on
heterotrophy rather than autotrophy as their main strategy for
acquiring energy (Mass et al., 2007; Lesser et al., 2010).

Corals are recognized for being extremely colorful under
short-wavelength lighting conditions, which is attributed to the
phenomenon of fluorescence (Kawaguti, 1944; Matz et al., 1999).
Fluorescence refers to the conversion of light wavelength, usually
from short wavelengths into longer ones. In corals, fluorescence
results from proteins belonging to the green fluorescent protein
(GFP)-like family, that are produced by the coral host. The
fluorescent proteins (FPs) may exhibit a diversity of excitation
and emission peaks (Alieva et al., 2008), and an individual coral
may possess a single or multiple FPs (Dove et al., 2001; Ben-Zvi
et al., 2014, 2019; Eyal et al., 2015). Fluorescence polymorphism
within the same coral species has been previously described as
resulting either from a difference in the expression levels of a
single protein (Gittins et al., 2015; Takahashi-Kariyazono et al.,
2018), or the presence of different FPs (Eyal et al., 2015; Ben-Zvi
et al., 2019).

One of the suggested functional roles for coral fluorescence
is that of photosynthesis enhancement. Earlier studies have
contended that fluorescence may enhance photosynthesis where
light is limited, as in deeper habitats, by conversion of short
wavelengths into longer wavelengths, capable of absorption by
the photosynthetic pigments of the algal symbiont using host
associated cyan FPs (Schlichter et al., 1986, 1994; Schlichter
and Fricke, 1990). However, this notion is not fully supported
since a conversion of blue light, which is abundant in deeper

habitats, usually results in green wavelengths that are the least
efficient for photosynthesis in Symbiodiniaceae (Scott and Jitts,
1977; Kühl et al., 1995). Another mechanism for photosynthesis
enhancement was suggested to rely on electron transport through
fluorescence resonance energy transfer (FRET) which depends
on a close proximity between the donor of electrons and the
recipient (Förster, 1955). Despite some evidences indicating that
FRET is occurring between FPs (Cox et al., 2007), there is
currently a lack of sufficient support for electron transfer between
FPs and the photosynthetic apparatus (Gilmore et al., 2003; Cox
and Salih, 2005). Nevertheless, recent studies suggest that FPs
may alter (by wavelength conversion) and disperse (by scattering)
the available light more efficiently through the tissue, enabling it
to reach the Symbiodiniaceae residing in the deeper tissue layers
of the coral host (Smith et al., 2017), and that symbiotic algae
are attracted to green light (Hollingsworth et al., 2005) and green
fluorescence (Aihara et al., 2019). The enhanced reflectance and
scattering of light are also supported by direct measurements
and is correlated with higher FP fluorescence (Salih et al., 2000;
Lyndby et al., 2016).

Thus far, hypotheses regarding the role of coral fluorescence
have mostly been tested on shallow corals (DeSalvo et al., 2008;
Dove et al., 2008; D’Angelo et al., 2012) and among coral morphs
that display different expression levels of the same FP but not
among morphs that differ in the FPs they contain (Gittins
et al., 2015; Roth et al., 2015). In MCEs, the phenomenon of
fluorescence polymorphism is common and multiple species can
exhibit several color morphs occurring side by side at the same
site and depth (Eyal et al., 2015; Ben-Zvi et al., 2019).

Here we sought to investigate the photosynthetic and bio-
optical properties of different fluorescence morphs of two
mesophotic coral species which differ either in the levels of
expression (i.e., Alveopora ocellata) or by the emission peak of
their FPs (i.e., Goniopora minor), in order to determine the
potential links between the coral host’s fluorescent pigments and
coral photosynthesis, in the unique mesophotic environment.

MATERIALS AND METHODS

Coral Collection, Sampling, and
Maintenance
Ten colonies of the mesophotic scleractinian coral A. ocellata
were collected from the reef in front of the Interuniversity
Institute for Marine Sciences in Eilat (IUI; 29◦30′16′′N,
34◦55′7′′E) and seven colonies of G. minor were collected
from the Dekel Beach site (29◦32′17′′N, 34◦56′56′′E), Gulf of
Eilat/Aqaba (GoE/A), northern Red Sea. All corals were collected
at 45 m depth using open-circuit technical diving. Corals were
transferred to a running seawater system at the IUI in dark
containers and were subsampled and preserved by dipping the
fragments in liquid nitrogen and storing them at −80◦C until
analyses (for Symbiodiniaceae density and genetic identification,
and chlorophyll concentration analyses). The remaining corals
(used for the scalar irradiance, chlorophyll fluorescence, and O2
evolution measurements) were kept for further analyses under a
lighting filter (“Lagoon blue,” Lee Filters, United States) providing
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a light regime similar to that of the natural mesophotic reefs at
Eilat (Dishon et al., 2012; Ben-Zvi et al., 2021).

Field Survey
Eight line transects (each 10 m long) were deployed at 45 m depth
at each collection site (i.e., IUI and Dekel Beach; total of 160 m).
Each colony crossed by the transect was classified as either a
high or low fluorescence morph (for A. ocellata), or as green,
yellow, or red morph (for G. minor), based on their appearance
under ambient light. A given morph’s abundance was calculated
by dividing the number of colonies from each morph by the total
number of colonies from the specific species it belongs to, that
were found along the transect.

Host Fluorescence and Spectral Analysis
Representative fragments from each morph were imaged with
a SONY RX100 camera under white illumination (for the non-
fluorescent images) and under a blue excitation light source
(BlueStar, NightSea, United States) and a commercial yellow
barrier filter (Y12, Tiffen, United States) mounted on the camera
(for the fluorescent images). Host fluorescence was excited
by a light source peaking at 450 nm (BlueStar, NightSea,
United States) positioned horizontally to the coral colony and
emission spectra were recorded with a flat cut 600 µm core UV-
Visible fiber (QP600-2-UV-VIS, Ocean Optics, United States)
equipped with a long pass barrier filter (cut-off <500 nm)
positioned at a 45◦ angle to the excitation light and connected
to a spectrometer (JAZ, Ocean Optics, United States).

Scalar Irradiance Measurements
G. minor fragments were placed in a black acrylic flow chamber
supplied with fresh seawater. Incident irradiance was provided by
a tungsten halogen lamp (Schott ACE 1, Germany) equipped with
a collimating lens. Measurements (n = 3 for each morph) of scalar
irradiance (E0) were collected using an 80 µm spherical light
microprobe (Zenzor, Denmark) connected to a spectrometer
(AvaSpec-UL2048XL, Avantes, United States). The microprobe
was oriented at 45◦ relative to the vertical incident light and
carefully positioned above the coral polyp mouth (Wangpraseurt
et al., 2012). Light gradients were measured through the coral
gastrovascular cavity until reaching the skeleton at 100 µm
increments, using a computer-controlled micromanipulator
(Wangpraseurt et al., 2012). The scalar irradiance measurements
were normalized to the downwelling spectral irradiance (Ed)
provided by the collimated light, measured from a non-reflective
black surface (Wangpraseurt et al., 2012). Integrated photon
irradiance was calculated individually for wavelengths of interest
(i.e., around the fluorescence emission peaks measured for
each fluorescence morph; 500–530 nm, 530–560 nm, and 560–
590 nm) by calculating the area under the curve of E0 and
Ed, using the “MESS” package in R software (R Core Team,
2013) and equation 1, where λa and λb are the wavelengths of
interest:

Integrated photon irradiance =
∫
λb
λa E0

∫
λb
λa Ed

(1)

Chlorophyll Fluorescence Measurements
We used an imaging-pulse amplitude modulation fluorometer
(imaging-PAM; blue maxi-version Walz GmbH, Germany) to
perform rapid light curves (RLCs) and measure photosystem
II (PSII) chlorophyll fluorescence on the intact corals. The
photosynthetic quantum yield of PSII (8PSII), relative electron
transport rate (rETR) and non-photochemical quenching (NPQ)
were calculated following Kramer et al. (2004) as:

8PSII =
(
F′m − F

)
/F′m (2)

rETR = 0.5 × 8PSII × PAR × 0.84 (3)

NPQ = 1−8PSII − 1/
[

NPQ1+ qL
(

Fm
F0
− 1

)]
(4)

Where Fm
′ is the steady-state maximal fluorescence yield,

PAR is the photosynthetically active radiation, F0 is the
fluorescence yield, Fm is the maximal fluorescence followed by
a saturating pulse, and qL is the fraction of open PSII centers.
It should be noted that rETR calculation is based on the PAR
absorbance (0.84) and photosystems ratio (1:1) of terrestrial
plants (Björkman and Demmig, 1987), as it has not yet been
determined for the selected coral species in this study.

Following a 30 min dark incubation, measurements were
taken using a saturation pulse intensity of 2,700 µmol photons
m−2 s−1 for 800 ms after 2.5 min incubation at each light
intensity (0, 20, 55, 110, 185, 280, 335, 395, 460, 530, 610,
and 700 µmol photons m−2 s−1). The following PAM settings
were used: measuring light intensity = 1, measuring light
frequency = 1, actinic light intensity = 1, gain = 1. The initial
slope (α), relative maximal electron transport rate (rETRmax),
and minimum saturating irradiance (Ek) were calculated
from a fitted double exponential decay function following
Platt et al. (1980).

O2 Evolution Measurements
Coral fragments were incubated in 85 mL acrylic closed
jacket respiration metabolic chambers containing 0.45 µ

filtered seawater. O2 concentration inside the experimental
chambers was measured using a FireSting pro meter (FSPRO-4,
Pyroscience, Germany) connected to fiber-optic oxygen sensors
(OPROB3, Pyroscience, Germany) placed at the top of each
chamber, calibrated using 1-point calibration of 100% O2
saturated water. Photosynthesis-irradiance (P-E) curves were
performed by incubating coral fragments for 10 min under
increasing light intensities (0, 5, 23, 36, 50, 78, 150, 250,
350, 450, and 550 µmol photons m−2 s−1). The incident
downwelling irradiance was provided by a computer-controlled
array of light-emitting diodes (LEDs) measured with a LI-1400
light meter (LI-COR, United States) equipped with a cosine-
corrected quantum sensor (LI-190R, LI-COR, United States). The
same procedure was also performed for blue light illumination
with the LED array covered with a spectral filter (“lagoon
blue,” Lee Filters, United States) mimicking the light spectrum
at mesophotic reefs (45 m) in Eilat (Ben-Zvi et al., 2021).
During measurements, the experimental water was constantly
stirred and kept at 25◦C as measured by a temperature
probe (TDIP15, Pyroscience, Germany). O2 concentrations
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were normalized to coral surface area that was determined
from top-view images and to the volume of water in the
chambers. Net and gross photosynthesis were fitted using a
double exponential decay following Platt et al. (1980), and α,
maximal photosynthesis rate (Pmax), compensation irradiance
(Ec), Ek, and dark respiration (Rd) were extracted from
the fitted models.

Symbiodiniaceae Density and
Chlorophyll Concentration
Frozen fragments of G. minor and A. ocellata were thawed and
tissue was removed in the presence of 0.22 µ filtered seawater
using an artist’s air brush into 50 ml tubes. Surface area was
determined using the single dip wax method for normalization
(Veal et al., 2010). Coral tissue was mechanically broken using a
motorized homogenizer and centrifuged at 5,000 rpm for 5 min
to separate the host (i.e., coral) supernatant from the algal pellet.
The host fraction was discarded, and the algal pellet was used
for the quantification of chlorophyll and Symbiodiniaceae cell
density. A small subsample from each algal pellet was taken for
Symbiodiniaceae genetic identification. Algal cells were counted
in triplicates using a hemocytometer under a light microscope.
The remaining algal pellet was used for chlorophyll analysis.
Chlorophyll was extracted in the presence of 100% cold acetone
for 15 h at 4◦C and chlorophyll a and c2 concentrations (pg
chlorophyll cell−1) were determined spectrometrically as in
Jeffrey and Humphrey (1975).

Symbiodiniaceae Genetic Identification
DNA was extracted using the DNeasy Blood and Tissue kit
(Qiagen, Germany) from the Symbiodiniaceae sub-samples
following the manufacturer’s protocol. A ∼700 bp sequence
fragment of the internal transcribed spacer 2 (ITS2) was
PCR amplified using the primers SYM_VAR_FWD and
SYM_VAR_REV following the procedure of Hume et al.
(2013). PCR products were purified by ExoSAP-IT (Thermo
Fisher Scientific, United States) and bi-directionally sequenced.
Individual sequences were aligned using Geneious, and a
consensus sequence was constructed for comparison against the
GeoSymbio database (Franklin et al., 2012).

Statistical Analyses
All statistical analyses were performed using R software (R
Core Team, 2013). Data were tested for normality using the
Shapiro–Wilk test and homogeneity of variance with Levene’s
test. G. minor data was tested using PERMANOVA (for repeated
measure ANOVA in the light curves analyses), ANOVA (for
normally distributed data), or permutational ANOVA when
data did not follow a normal distribution. A. ocellata data was
tested with PERMANOVA (for repeated measure ANOVA in the
light curves analyses), t-tests (for normally distributed data) or
Wilcoxon signed-rank test (for non-normal data). Results were
considered significant if p < 0.05. Where appropriate, data were
further examined using a Tukey’s post hoc test.

RESULTS

Fluorescence Polymorphism and
Abundance
Fluorescence morphs of A. ocellata and G. minor visually differ
from one another under white illumination, under blue light
illumination, and in their fluorescence emission peak (λem;
Figure 1). Three distinct fluorescence morphs are described
for G. minor; a red morph (Figure 1A; λem = 580 nm),
a green morph (Figure 1B; λem = 515 nm), and a yellow
morph (Figure 1C; λem = 515 and 545 nm). Two fluorescence
morphs are described for A. ocellata: a low fluorescence morph
(Figure 1D; λem = 520 nm) and a high fluorescence morph
(Figure 1E; λem = 520 nm), both of which present the same green
emission peak, with the distinction that the low fluorescence
morph appears red under both illuminations due to chlorophyll
fluorescence of its symbionts (λem = 680 nm). The green
morph of G. minor presents the typical, brownish color of
corals under white light (Figure 1B, top image), commonly
attributed to the symbiotic algae, yet exhibits a green fluorescence
under the excitation light (Figure 1B, middle image); while the
yellow morph displays a yellowish appearance under white light
illumination (Figure 1C, top image) and exhibits a bright green
glow under blue illumination (Figure 1C, middle image).

For G. minor, out of 63 surveyed colonies, the green
morph was more prevalent compared to the yellow morph
(74 ± 14.7% and 26 ± 14.7%, respectively). The red morph
of G. minor was extremely rare and was not crossed in our
field surveys. For A. ocellata, we found that out of 40 colonies,
84 ± 17.4% (mean ± SD) presented low fluorescence and only
15.15± 17.43% of them displayed high fluorescence.

In vivo Light Microenvironment
Scalar irradiance (E0) measurements revealed a strong light
gradient within the coral tissue (Figure 2 and Supplementary
Figure 1). At the tissue surface, irradiance is 1.5-fold higher than
the incident irradiance for visible light (PAR; 400–700 nm) and
at the tissue-skeleton interface, available light is greatly reduced
to 50% of the incident light for PAR. While this surface light
enhancement is prominent between 400 and 700 nm for the
yellow and green morphs, it only occurs above 580 nm for
the red morph (the λem of this morph). Light absorbance by
photosynthetic pigments (i.e., chlorophyll a) can be observed as a
drop around 680 nm in all fluorescence morphs, and in the yellow
morph the contribution of the host fluorescent proteins can be
observed as a shoulder between 500 and 600 nm. The scattering of
light at wavelengths above 700 nm was found to be 11–14% higher
in the green morph compared to the other morphs. Comparing
the integrated photon irradiance (Figure 2B) revealed significant
differences in all morphs between the two areas in which the
measurement was taken (i.e., tissue surface and tissue-skeleton
interface; permutational ANOVA, p< 0.0001). When examining
the differences among morphs within each location we found
that the yellow morph differed from the green and red morphs
in the surface measurements (permutational ANOVA, p < 0.01),
while the green and red morphs did not (permutational ANOVA,
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FIGURE 1 | Fluorescence diversity of mesophotic corals. Representative non-fluorescent images (top image in each panel); fluorescent images (middle image in
each panel); and fluorescence emission spectra of Goniopora minor (A–C) and Alveopora ocellata (D,E) fluorescence morphs. Fluorescence emission peaks are
indicated by arrows.

p = 0.71). Near the skeleton the green morph differed form the
two other morphs (permutational ANOVA, p < 0.05) while the
red and yellow did not (permutational ANOVA, p = 0.89).

Chlorophyll a Fluorimetry
Relative electron transport rate values did not differ significantly
between morphs of A. ocellata (Figures 3A,C; PERMANOVA,
F = 0.85, p = 0.37) or G. minor (PERMANOVA, F = 0.41,
p = 0.7). In A. ocellata, we found a significant effect of
the fluorescence morph on 8PSII (Figure 3B; PERMANOVA,
F = 5.68, p = 0.04), being higher in the low fluorescence morph,
while in G. minor it was found to be lowest in the green morph
(Figure 3E; PERMANOVA, F = 58.13, p = 0.01). The maximum
quantum yield of PSII (Fv/Fm; or 8PSII measured after a dark
incubation) was found to be similar among the fluorescence
morph of A. ocellata (Figure 3B and Supplementary Figure 3A;
t-test, t = −1.37, p = 0.18) and among morphs of G. minor
(Figure 3E and Supplementary Figure 2B; permutational
ANOVA, p = 0.18).

Non-photochemical quenching values were also similar
between morphs of A. ocellata (Figure 3C; PERMANOVA,
F = 0.1, p = 0.74), and G. minor (Figure 3F; PERMANOVA,
F = 0.06, p = 0.09).

The initial slope (α), and relative maximal electron transport
rate (rETRmax) calculated from the RLC were found to be
similar among A. ocellata morphs (Supplementary Table 1; t-
test, t = −0.05, p = 0.96 and t = −0.38, p = 0.71, respectively),

while the minimum saturating irradiance (Ek) was slightly higher
in the high fluorescence morph (t-test, t = −2.17, p = 0.06). In
G. minor, the fluorescence morph had no significant effect on
any of the parameters (Supplementary Table 1; permutational
ANOVA, p< 0.05).

O2 Evolution
O2 evolution differed when measured under white or blue
illuminations (Supplementary Figure 3, Table 1, and
Supplementary Table 2; PERMANOVA, p = 0.03). Since
P-E curves performed under blue illumination resulted in
fully extended polyps, smoother curves (i.e., higher R2), and
had been previously suggested to be more appropriate for
mesophotic corals (Mass et al., 2010), we present in Figure 4
and Supplementary Figure 4 measurements, and in Table 1
parameters derived from the curves performed under blue light
(parameters derived from the white illuminated curves can be
found in Supplementary Table 2).

We did not find differences in the P-E derived parameters
between species (permutational ANOVA, p > 0.05) or between
A. ocellata and G. minor morphs (t-test for A. ocellata or
permutational ANOVA for G. minor, p> 0.05).

Symbiodiniaceae Density and
Chlorophyll Concentration
Symbiodiniaceae density and chlorophyll (a and c2)
concentrations did not significantly differ between species
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FIGURE 2 | In vivo spectral scalar irradiance of three fluorescence morphs of the mesophotic coral Goniopora minor. (A) Scalar irradiance (E0) was measured at the
coral tissue surface (solid lines) and at the tissue-skeleton interface (dotted lines) of red (colored red), green (colored green), and yellow (colored yellow) fluorescence
morphs of the mesophotic coral G. minor. Dashed black line indicates 100% of the incident irradiance (Ed). Colored lines represent the mean relative scalar
irradiance (n = 3) of each morph and confidence intervals are represented by transparent corresponding areas. Fluorescence emission peaks are indicated by
arrows. The solid box indicates an area of interest corresponding to (B) the integrated photon irradiance (n = 3) for specific wave bands (500–530 nm, 530–560 nm,
and 560–590 nm) for the three fluorescence morphs. Boxes represent the upper and lower quartile, center lines represent medians, and whiskers extend to data
measurements that are less than 1.5∗ IQR (interquartile range) away from first/third quartile.

(Figure 5; permutational ANOVA, p < 0.05). The mean (±SD)
Symbiodiniaceae density was 2.6 × 107

± 1.4 × 107 cells
cm−2. Moreover, we did not find a significant effect of the
fluorescence morph, of both species, on Symbiodiniaceae density
(Figure 5A, t-test, t =−0.54, p = 0.6, and permutational ANOVA,
p = 0.88 for A. ocellata and G. minor, respectively), chlorophyll
a concentration (Figure 5B; Wilcoxon test, W = 7, p = 0.35
and ANOVA, F = 0.53, p = 0.61 for A. ocellata and G. minor,
respectively), and chlorophyll c2 (Figure 5C; Wilcoxon test,
W = 7, p = 0.35 and ANOVA, F = 0.86, p = 0.47 for A. ocellata
and G. minor, respectively).

Genetic Analysis
Genetic identification based on the ITS2 region revealed that
all our coral samples harbored Symbiodiniaceae from the genus
Cladocopium (formerly known as clade C; LaJeunesse et al.,
2018), regardless of species or fluorescence morph. Based on the
ITS2 sequences we found that A. ocellata harbored Cladocopium
types C3.10 (n = 7), C101 (n = 1), C3 (n = 1), and C66b (n = 1),
and G. minor harbored types C1 (n = 4), C78 (n = 1), C40 (n = 1),
and C3 (n = 1). We found no effect of the fluorescence morph on
Symbiodiniaceae types.

DISCUSSION

The spectral analyses revealed a range of fluorescence emission
peaks for two mesophotic coral species (Figure 1). While,

A. ocellata presented one fluorescence emission peak (at 520 nm),
G. minor presented three (515, 545, and 580 nm). In the GoE/A,
A. ocellata mostly inhibits mesophotic depths (Eyal-Shaham et al.,
2016), whereas G. minor is a depth generalist and can be found
also in the shallower parts of the reefs (Tamir et al., 2019).
The differences in the zonation characteristics of these species
may explain why G. minor possesses a range of FPs. A broader
FPs arsenal covers a broader spectrum of emission peaks which
potentially correspond to a wider range of excitations that may
mediate excess light (at shallow depths) or provide wavelengths
that are absent (at mesophotic depths). A. ocellata, presents
only one fluorescence emission which will have a narrower
excitation range. Field surveys revealed that for A. ocellata the low
fluorescence morph was the dominant one, while for G. minor the
dominant morph was the green one. Despite the reported higher
abundance of red FPs in deeper habits compared to shallower
ones, and their suggested advantage in the dispersal of light
deeper into the coral tissue (Smith et al., 2017), the red morph
of G. minor is extremely rare.

Host fluorescence is known to play a critical role in the
modification of irradiance intensity and the spectral tuning
of in-hospite irradiance environment (Salih et al., 2000; Mazel
and Fuchs, 2003; Wangpraseurt et al., 2012; Lyndby et al.,
2016; Smith et al., 2017; Quick et al., 2018; Wangpraseurt
et al., 2019; Bollati et al., 2020). Our light microsensors
measurements indicate that the optical environment within
the coral tissue is influenced by the presence of different FPs
(Figure 2 and Supplementary Figure 1). Despite the bright
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FIGURE 3 | Rapid light curves of two mesophotic coral species. Fitted (solid lines) and mean (circles) ± SE (error bras) of rETR values (A,D), effective quantum yield
[8PSII; (B,E)], and non-photochemical quenching [NPQ; (C,F)] of high fluorescence (dark green; n = 5) and low fluorescence (light green; n = 5) morphs of Alveopora
ocellata (A–C), and green (green; n = 2), red (red; n = 1), and yellow (yellow; n = 2) fluorescence morphs of Goniopora minor (D–F).

TABLE 1 | Photosynthetic parameters derived from photosynthesis-irradiance (P-E) curves under blue illumination.

Species Morph n Slope
(α) (µmol O2 µmol

photons−1 m−2 s−1)

Pmax

(µmol O2 cm−2 hr−1)
Ec

(µmol photons
m−2 s−1)

Ek

(µmol photons
m−2 s−1)

Rd

(µmol O2 cm−2 hr−1)

A. ocellata HF 1 0.006 1.12 26 176 0.17

A. ocellata LF 4 0.01 ± 2e-3 1.27 ± 0.87 37 ± 8 110 ± 77 0.43 ± 0.15

G. minor Green 2 0.08 ± 0.09 1.14 ± 0.4 23 ± 8 67 ± 87 1.42 ± 1.57

G. minor Red 1 0.01 0.96 29 75 0.37

G. minor Yellow 3 0.01 ± 8e-3 0.74 ± 0.13 22 ± 7 86 ± 76 0.31 ± 0.23

Mean (±SD) value of the initial slope (α), maximal photosynthetic rate (Pmax ), minimum saturating irradiance (Ek ), compensation irradiance (Ec), and dark respiration (Rd )
of high fluorescence (HF) and low fluorescence (LF) morphs of Alveopora ocellata and green, red, and yellow fluorescence morphs of Goniopora minor.

appearance of G. minor under white light (in the red and
yellow morph; Figures 1A,C) and under blue excitation light
(all morphs), the contribution of the FPs to the spectral
signature of the morphs was not as strong as expected and
previously documented (Mazel and Fuchs, 2003; Wangpraseurt
et al., 2012). This may be explained by the light source used
for these measurements which is poor in blue, FP-exciting
photons, or by the absorbance of light by the photosynthetic
pigments sharing these emission peaks of host fluorescence.
For example, the yellow morph of G. minor has a fluorescence
emission peak at 545 nm (Figure 1C), while peridinin has
an absorbance peak at 540 nm (Niedzwiedzki et al., 2014).
Additionally, coral-associated cyanobacteria may also contain
phycoerythrin with absorption bands around 505 and 571 nm

(Lesser et al., 2004), which correspond to the emission
peaks of several FPs and may confound the interpretation
of fluorescence spectra. Nonetheless, the in-hospite irradiance
differed among the morphs (Figure 2). The yellow morph
presented the greatest scalar irradiance enhancement at the
shorter wavelengths (i.e., 400–700 nm), and the green morph
showed greater light enhancement at longer wavelengths (700–
800 nm). The dominance of certain morphs over others and
the differences found in the internal light environment within
the coral tissue, led us to hypothesize that certain FPs may
be advantageous for photosynthesis within the mesophotic
light environment.

Chlorophyll fluorescence-based measurements revealed that
A. ocellata and G. minor fluorescence morphs mostly did
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FIGURE 4 | Net photosynthesis of two mesophotic corals fluorescence morphs. Fitted (solid lines) and mean (circles) ± SE (error bars) values of O2 evolution
(µmol O2 cm−2 hr−1) measured under blue light at increasing intensities (0, 5, 23, 36, 50, 78, 150, 250, 350, 450, and 550 µmol photons m−2 s−1) of Alveopora
ocellata [(A), n = 1 and 4 for high and low fluorescence morphs, respectively] and Goniopora minor [(B), n = 2, 1, and 3 for green, red, and yellow morphs,
respectively].

not differ in the quantum yield of PSII (Figure 3A,B
and Supplementary Figure 2). Likewise, Roth et al. (2015),
did not find differences in 8PSII between high and low
fluorescence morphs of Leptoseris spp. at mesophotic depths.
Although it has been shown that changes in the in-hospite
irradiance environment can affect absolute electron transport
rates in corals (Wangpraseurt et al., 2014), we found no
differences in rETR values among the examined morphs
(Figures 3A,D) despite an enhanced irradiance measured
within the tissue of G. minor’s yellow morph (Figure 2).
When the photoprotective role of FPs was examined in
mesophotic Euphyllia paradivisa, no differences in the amount
of UVR-induced DNA damage were found between fluorescence
morphs (Ben-Zvi et al., 2019). However, this does not exclude
the putative photoprotective role of FPs as NPQ values
were slightly (but not significantly) higher for the red and
yellow morphs of G. minor compared to the green morph
(Figure 3F), indicating their potentially greater capability
in mediating excess light and preventing damage to the
photosynthetic apparatus.

Respiration and photosynthesis data from mesophotic corals
are very limited and there is currently no agreed protocol
for performing these measurements. Although Mass et al.
(2010) provided evidence for the chromatic dependence of
photosynthetic performance on the light provided during
measurements, ex-situ measurements on mesophotic corals
are still commonly performed under white light (Cooper
et al., 2011; Ben-Zvi et al., 2020). Since corals are known to
photoacclimatize to their natural light conditions, mesophotic
corals are most likely acclimatize to blue light, as this is the
prominent wavelength at depths of 30–150 m (Kahng et al., 2019).
Moreover, the wavelength-dependent absorption cross-section

for Symbiodiniaceae has already been established as being more
efficient at shorter wavelengths than at longer ones (Szabó et al.,
2014). Furthermore, as corals FPs are largely excited by blue
light, the FPs will in turn affect the internal light environment.
We therefore compared measurements taken under white and
blue light (Supplementary Figure 3 and Supplementary Table 2)
and indeed found differences in coral response. Under blue light
corals expanded their tentacles, while under white light they
contracted them. Conducting the metabolic measurements under
blue light resulted in smoother P-E curves (Supplementary
Figure 3), which may represent a more natural performance of
mesophotic corals. Most of the previously reported values for
P-E derived parameters that we were able to compare to our
measurement aligned with the current results (Cooper et al.,
2011; Nir et al., 2014; Eyal et al., 2019). The results indicate that
mesophotic corals usually present relatively low compensation
irradiance ranging between 15 and 96 µmol photons m−2 s−1

as well as low saturating irradiances, ranging between 28 and
80 µmol photons m−2 s−1 leaving a narrow window of light
intensities which enable photosynthesis.

Klueter et al. (2006) found that a highly fluorescent morph
of Montipora digitata had higher Symbiodiniaceae densities and
chlorophyll a concentration compared to a low fluorescent
morph. We examined the Symbiodiniaceae densities as well as
chlorophyll a and c2 concentrations in all our studied morphs
but found no differences among our samples (Figure 5). Our
measured values of Symbiodiniaceae density are higher than
previously reported values in mesophotic corals (Bongaerts
et al., 2011; Cooper et al., 2011), however this parameter
can greatly vary between species, depth, and light availability
[reviewed by Roth (2014)]. Chlorophyll concentration values
determined in this study, align with previously reported values
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FIGURE 5 | Photobiology of fluorescence morphs of the mesophotic corals Alveopora ocellata and Goniopora minor. Areal Symbiodiniaceae density (A), cellular
chlorophyll a (B), and cellular chlorophyll c2 (C) of low fluorescence (LF) and high fluorescence (HF) morphs of A. ocellata and green, yellow, and red fluorescence
morphs of G. minor. Boxes represent the upper and lower quartile, center lines represent medians, and whiskers extend to data measurements that are less than
1.5*IQR away from first/third quartile. Outliers are represented by dots. Sample size (n) is indicated below each box.

(Lesser et al., 2010; Cooper et al., 2011; Eyal et al., 2019). The
latter result also indicates that the brighter color of the yellow
morph of G. minor is probably the result of a higher expression
of FPs rather than a low algal density or low chlorophyll
concentration. Similarly, in A. ocellata, the red/brown appearance
of the low fluorescence morph compared to the green appearance
of the high fluorescence morph may also be a result of a higher
concentrations of the host FP and not of a change in the
algal symbionts.

Aihara et al. (2019) demonstrated that coral fluorescence may
serve as an attractive signal for symbiotic algae, and specific
Symbiodiniaceae genera/species were found to be correlated
with “redder” juveniles of Acropora millepora (Quigley et al.,
2018). We therefore sought to determine whether a specific
fluorescent signal would indeed attract symbionts that differ
genetically. The genetic identity of Symbiodiniaceae revealed
no significant effect of the fluorescence morph, and all corals
harbored Symbiodiniaceae from the genus Cladocopium, as
previously described in other coral species at the mesophotic
reefs of the GoE/A (Nir et al., 2011; Einbinder et al.,
2016; Eyal et al., 2019), as well as at other mesophotic
reefs worldwide (Ziegler et al., 2015; Goulet et al., 2019).
We therefore conclude that despite the possibly of serving
as general Symbiodiniaceae attractant, specific fluorescence
emissions do not attract specific Symbiodiniaceae genotypes.
Since all the species and morphs we examined share the
same habitat and are found in close proximity to each
other, and hence experience similar environmental conditions,
there may not be an apparent reason to attract different
symbionts, which may or may not have an advantage in their
photosynthetic performances or in their tolerance to stressors,
such as temperature.

In this study, we investigated the bio-optical properties and
photosynthetic performances of mesophotic corals exhibiting
different host fluorescence emissions resulting from differential
expression of the same FP (A. ocellata) or multiple FPs
(G. minor). Our results, showing only negligible differences in
the photobiology of the different coral fluorescence morphs,
do not support any of the prevailing mechanisms that
have been suggested to enhance photosynthesis in coral by
means of FPs in deeper habitats. Nevertheless, the bio-optical
properties revealed changes among morphs, indicating that
fluorescence may mediate the internal light environment of
corals, potentially affecting other aspects of coral physiology
through cellular mechanisms that are light-regulated such as
circadian clocks entrainment (Levy et al., 2007), spawning
(Sweeney et al., 2011), or growth (Roth et al., 1982). Future
research should focus on depicting the pathways, such as
gene regulation and expression, by which the effect of the
diverse internal light regimes found among morphs may play a
significant role.
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